Vertically Symmetric Alternating Sign Matrices and a Multivariate Laurent Polynomial Identity
نویسندگان
چکیده
منابع مشابه
Vertically Symmetric Alternating Sign Matrices and a Multivariate Laurent Polynomial Identity
In the talk I first explained how we came up with this conjecture in an attempt to prove a conjecture on a refined enumeration of vertically symmetric alternating sign matrices. An alternating sign matrix is a quadratic 0, 1,−1 matrix such that the non-zero entries alternate and sum up to 1 in each row and column. Next we give an example of such an object 0 0 1 0 0 1 0 −1 0 1 0 0 1 0 0 0...
متن کاملSymmetric alternating sign matrices
In this note we consider completions of n×n symmetric (0,−1)-matrices to symmetric alternating sign matrices by replacing certain 0s with +1s. In particular, we prove that any n×n symmetric (0,−1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with +1s can be completed to a symmetric alternating sign matrix. Similarly, any n × n symmetric (0,+1)-matrix that can ...
متن کاملFrom a Polynomial Riemann Hypothesis to Alternating Sign Matrices
This paper begins with a brief discussion of a class of polynomial Riemann hypotheses, which leads to the consideration of sequences of orthogonal polynomials and 3-term recursions. The discussion further leads to higher order polynomial recursions, including 4-term recursions where orthogonality is lost. Nevertheless, we show that classical results on the nature of zeros of real orthogonal pol...
متن کاملTotally Symmetric Self-Complementary Plane Partitions and Alternating Sign Matrices
We present multiresidue integral formulae for partial sums in the basis of link patterns of the polynomial solution to the level 1 Uq(ŝl2) quantum Knizhnik–Zamolodchikov equation at generic values of the quantum parameter q. These allow for rewriting and generalizing a recent conjecture [Di Francesco ’06] connecting the above to generating polynomials for weighted Totally Symmetric Self-Complem...
متن کاملDiagonally and Antidiagonally Symmetric Alternating Sign Matrices of Odd Order
We study the enumeration of diagonally and antidiagonally symmetric alternating sign matrices (DASASMs) of fixed odd order by introducing a case of the six-vertex model whose configurations are in bijection with such matrices. The model involves a grid graph on a triangle, with bulk and boundary weights which satisfy the Yang–Baxter and reflection equations. We obtain a general expression for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2015
ISSN: 1077-8926
DOI: 10.37236/4436